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Laminar flow over a small hump on a flat plate 

By F. T. SMITH 
Department of Mathematics, University College, London? 

(Received 22 June 1972) 

A boundary layer flows over a flat plate which has on it a small hump situated 
downstream of the leading edge. The description of the boundary-layer flow, 
based upon a triple-deck structure, shows how the presence of the hump gener- 
ates an interaction between the inviscid region just outside the layer and the 
viscous region near the hump. The pressure force dominant in the boundary layer 
and the connexion of the local flow with the main stream develop together and 
are self-perpetuating, and both remain of primary significance for a wide range 
of hump sizes, even for a hump buried well inside the boundary layer. By con- 
sideration of the limiting cases of very small and very large humps, a consistent 
account of the nature of the disturbances due to the various sizes of hump is 
produced. The forces and couples on the hump are also evaluated. 

1. Introduction 
We consider high Reynolds number fluid flow past if, flat plate on which 

there is a small excrescence, or hump. The hump is cylindrical and in cross- 
section has dimensions small compared with those of the boundary layer along 
the plate as shown in figure 1. We suppose the plate to be fixed, with a length L 
upstream of the hump, and choose Cartesian axes Ox*y* such that the leading 
edge is given by x* = -Land the plate is y* = 0. The fluid is compressible, viscous 
and Newtonian, and far upstream is moving with a uniform speed U*, parallel 
to Ox* ; the Reynolds number is defined as Re = U*, Llv*,, where v* is the kine- 
matic viscosity and the suffix w denotes values far upstream. The superscript 
signifies dimensional quantities, and we non-dimensionalize the problem by 
writing the velocity components, pressure and density in the form u* = U* r n ?  u 
v* = Uzv, p* = p z  +pz U z 2 p  and p* = pzp .  The fluid motion is assumed to be 
laminar and two-dimensional. 

The problem has recently been considered by Hunt (1971), who used a method 
based on a two-region structure well inside the boundary layer and assumed tha,t 
the main stream has no first-order effect on the pressure within these regions. 
Only very small humps of dimensional length LA and height LS, where 

Re-2 < A  < Re-4, Re-3 < 6 < AtRe-4, ( 1 . 1 )  

could be accommodated in Hunt's model, as described in $ S, the model being a 
significant first step incorporating most of the essential features of the local flow. 

7 Present address : Department of Mathematics, University of Southampton. 
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FIGURE 1. The basic problem: two-cbmensional flow of a boundary layer over a small 
hump, of length O(e3L) and height O(@L) ,  on a flat plate, the protrusion situated at a 
distance L from the leading edge. The flow features for many other hump sizes can be 
obtained as limiting solutions of this crucial case. 

In the present paper we extend the range of applicability of laminar theory to 
include humps of much larger size, such as those given by (1.3) below, and 
much smaller size (see appendix) and in the course of the analysis are able to 
improve upon Hunt's approach, the latter being basically correct except for the 
assumption mentioned above. 

To analyse correctly even the effects of a hump of the size given in (Ll) ,  and 
its wake, on the boundary layer flowing over it, it is our contention that the most 
important properties of the flow must be determined on a length scale of O(Le3), 
where the small parameter 

is introduced. Accordingly we here start by examining the flow past a hump of 
length of O(Le3) and height of O(Ls5). Specifically, we consider humps that have 
profiles 

where h is initially of order one and the function P is such that hP(X)  is of order 
one or less for all X = x*/Le3. As shown in 5 4, the solution for this hump provides 
as a special example the solution for the very small hump (1.1) as we let the larger 
size tend to the same order of magnitude as that given by (1.1). 

The choice (1.3) is particularly convenient as the hump may then be taken 
as an O(1) disturbance within the lower deck of a triple-deck structure. Further, 
the analyses in 9 7 and in the appendix demonstrate that the choice (1.3) is an 
essential one for reasons given later on in the introduction. The expansion and 
subsequent contraction of the boundary-layer thickness caused by the presence 
of the hump (1.3) produce first-order perturbations in the upper deck just outside 
the boundary layer that interact with and serve to maintain the lower-deck flow. 
The triple-deck structure, based on the matching and overall consistency of 
asymptotic expansions in three regions, the upper, main and lower decks, in- 
corporates this feedback effect and we are able to satisfy the boundary conditions 
on the hump and those of matching upstream and outside the boundary layer. 

e = Red (1.2) 

y * / L  = E ~ ~ P ( x * / L s ~ ) ,  (1.3) 
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As with previous problems studied by application of triple-deck arguments, 
e.g. Stewartson (1969, 1970a, b, 1971) and Messiter (1970), the fundamental 
problem for the flow over the hump reduces to that in the lower deck, where the 
motion is essentially viscous with an  induced pressure gradient. Linearized 
solutions are obtained for both supersonic and subsonic main streams and the 
consistency of the model is demonstrated by the match achieved between these 
solutions and the external inviscid flow. 

The special case introduced in (1.1) is solved by considering the effects of a 
suitably defined point disturbance within the lower deck. Similarity solutions for 
the decay of the velocity perturbations in the far-wake, x*/Ls3 9 1, are found to 
be in agreement with the full linearized solutions, while an analysis of the near- 
wake of the point disturbance, x*/Le3 < 1, shows that the effect of the main 
stream remains a primary influence in the local flow. Also, this influence is 
independent of the subsonic or supersonic nature of the main stream. In Q 6, we 
calculate the first-order forces and couple on the general Le3 by Ls5 hump and it 
is shown that the couples due to streamwise and normal stresses respectively 
contribute equally to the total couple Con the hump. On the other hand, the force 
F2 normal to the main stream flow is zero, whilst the drag Fl is given to first 
order by the undisturbed boundary-layer contribution. 

In  § 7 we extend the description of laminar flow over small bodies by considering 
humps of length of order unity. Perturbation solutions of the boundary-layer 
equations are obtained and examination of the implied efflux from the layer 
shows that neglect of pressure feedback effects becomes invalid as we approach 
the region x*/L N e3. It is triple-deck theory that resolves this difficulty. The 
choice (1.3) is, however, even more crucial in the sense that it also enables a 
direct link to be made with the problem of a very small hump of dimensions 
O(LRef) by O(LRe*), and this match is elucidated in the appendix. Thus a 
complete and self-consistent description of the wake flow is obtained for the 
various sizes of hump between O(LRe*) by O(LRe3) and those considered in § 7 
and the importance we attached to the flow problem for the hump (1.3) is 
justified. 

The problem is of physical interest, especially with regard to the phenomenon 
of trip-wire transition. The aim of the present laminar theory is to provide a 
complete and consistent description of the flow characteristics for a wide variety 
of humps; ultimately an examination of, and criteria for, stability of the laminar 
flow would be desirable so that insight into the more realistic problems may be 
gained. However, it  is felt that the laminar theory developed here is satisfactory 
as a first step in that it contains the fundamental features of the local flow 
problem. 

2. The triple-deck structure 
We here outline the systematic procedure for setting up the triple-deck appro- 

priate to our problem. The full consistency arguments and asymptotic expansions 
in the three necessary regions are the same in their essential points a8 those laid 
down originally by Stewartson & Williams (1969, herea.fter referred to as SW). 



806 

/ -----L 

~~i3aCY) - 
--c 

P. T. Smith 

~ - 
Upper deck 

x=~/~3-1, rje3=y-1 

m4) 
Main deck 

x-I, 1 7 i c 4 = ~ - 1  

Lower deck x-1, yie5 
=z- 1 

Y=y*/L 

I - 1  

Starting in the main deck (figure 2 ) ,  where y = y*/Le4 and X = x*/LB~ are the 
order-one co-ordinates, the flow and temperature variables are expanded as 

(2.1) 1 
u = U,(y) + €U,(X, y) + E2U2(X, y) + . . . , 
v = B ~ V , ( X ,  y) + e3v2(X, y) + . . ., 
P = e2p2(X, $4 + C3P3(X, y) + *. ., 
P = Ro(y) + €Pl(X,  y) + . * .  9 

T = To(y) + €Ti (X ,  y) + . . . -, 
where T is the absolute temperature suitably non-dimensionalized. The plate 
is maintained at a uniform temperature T,, u = U,(y) + O(e3) is the undisturbed 
boundary-layer profile far upstream of the hump and Ro(y) the density there. 

We examine whether solutions can be found that match with the known 
Blasius boundary layer as X -+-a and with the main stream solutions as 
y + co, and that satisfy u = v = 0 on the hump and on the plate. Upon substitu- 
tion of (2.1) into the full Navier-Stokes equations, results (SW 3.10)-(SW 3.17) 
are obtained. It is then clear that only the boundary conditions upstream can 
be accommodated by the main-deck expansions and the flow solutions in terms 
of the unknown pressure force p 2  = p z ( x )  are 

(sw3.19) 

together with (SW 3.24) and (SW 3.25). Here A , ( X )  is also unknown but we re- 
quire p 2 ,  A,  + 0 as X + - 03 and, furthermore, postulate that 

Pz(X)  + 0- (2 .2 )  

As y --f co the match with the flow outside the boundary layer is not achieved 
directly by (2.1) and a further evaluation is needed in an outer region to adjust 
the solutions to the main stream values. The required region is the upper deck, 
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where g = y*/Le3 and X are relevant co-ordinates, and guided by (2.1) and 94 

of SW we expand u = 1+€2u2(x,g)+ ..., 
2, = $&(X, j j )+  ..., 
p = €2P2(X,  5) + . . . . 

The resultant inviscid irrotational equations of motion furnish the relations 

where Mm is the main stream Mach number; (2.3) is a matching criterion between 
the main and upper decks. Also, the merging with the outer flow as 

is then achieved (see also § 4). 
Consider now the structure of the main-deck solutions as y + 0. Here again the 

boundary conditions cannot be satisfied directly since we assume A , ( X )  + 0, 
from (2.2) and (2.3). A mismatch must be avoided by use of a third region, the 
lower deck, that is close to the plate and in which X and 2 = y*/Le5 are the order- 
one co-ordinates. The perturbation to the Blasius solution is no longer small 
hereand theexpansions, implied by (2.1), (SW 5.6)and (SW5.7), takeon theforms 

x2 + g 2  -+ 0 ( € - 3 )  

(2.4) i 
u = €U+€2,ii2+ ..., 
2, = €3v+€45 2 . . . ,  

p = €2P(X ,Z)+€3p3(X , z )+  ..., 
p = P,+€'z+ ..., 

where pw = R,(O) is the fluid density at the plate. Purely for the sake of brevity 
we now set equal to unity all the order-one physical constmts, e.g. I M i  - 11, 
involved in the aEne transformations (SW 5.11) -(SW 5.16), and the Navier- 
Stokes equations then yield the nonlinear system 

ux+ v, = 0, 1 
uux + vu, = - P ' ( X )  + UZZ,( 

with boundary conditions 

U = V = 0 on 2 = h F ( X )  (no-slip on the hump), (2.6) 

aU/aZ -+ 1 as X +-a (matching with the Blasius solution U,(y) N €2 
upstream) (2.7) 

U N Z + A ( X )  as 2 + co (matching with the main deck). (2.8) 

Here, for subsonic main stream flow, 

or for the supersonic case, 

(2.9) 

(2.10) 

- 
X 

- m  
A ( X )  = -1 P(t)dt, 
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corresponding to (2.3) since P = P ( X )  = p 2 ( X ) .  In  addition when 31, < 1 some 
limiting behaviour for P ( X )  as (XI  --f 00, determined from properties in the main 
stream, must be satisfied; this condition is specified explicitly, and shown to be 
satisfied, in $4. The hump now has a profile 2 = hF(X)  corresponding to (1.3) 
in dimensional terms. 

In  essence what this well-founded model does is to furnish via the main deck 
the link, between the main stream and the viscous region close to  the hump, that 
is needed to produce the pressure force driving the flow in the latter region. 
This interaction between the upper and lower decks is manifested in the condition 
(2.8), matching the lower to the main deck, and in the relations (2.9) and (2.10), 
which match the main to the upper deck. It can be seen that the existence of the 
e2P pressure perturbation and the interaction are mutually reinforcing. 

The justification for the postulate (2.2) is the non-triviality of the solutions 
found in $3 3-5 below, while the vanishing of any pressure term of order greater 
than €2 in (2.1) is necessitated by the consistency of the structure. For example, 
a non-zero term cp1 in (2.1) implies disturbances in the main stream that could 
only be produced by a source existing outside the triple deck, and this disagrees 
with the set-up of theposed problem, the plate being flat except within the triple- 
deck region. Further details of the triple-deck structure are given by SW, 
Stewartson (1969, 1970a, b, 1971), Smith & Stewartson (1973) and Smith (1972) 
for the discussions of free interaction, corner flows, trailing-edge flows and strong 
blowing. The common feature of all such problems, including the present one, is a 
rapid change in the boundary conditions along a flat plate and their solutions all 
require that account be taken of the pressure-gradient effects induced by the 
rapid change in boundary-layer thickness ( - A ( X ) )  as given in (2.9) and (2.10). 

For general h F ( X ) ,  a well-defined problem, (2.5)-(2.9) or (2.10), is set and a 
numerical study of the flow past the hump must be undertaken, for example by 
use of the methods in SW. The formulation (2.5)-(2.10) could still apply even 
if there is a separation bubble near the body provided that the bubble contains 
only relatively slowly moving fluid, for then we have effectively an extra body, 
given by the shape of the bubble, to consider. 

3. Linearized lower-deck theory for M,  < 1 

Consider now h < 1 and N, < 1 ; the features for supersonic flows are explored 
later on in $5. Equations (2.5) may be linearized about the undisturbed boundary- 
layer profile by expanding the flow variables as follows: 

U = 2 + hU + O(h2), V = hV + O(h2), P = hF + O(h2), A = hA+ O(h2), 

and if we further linearize the no-slip conditions on the hump (an alternative is 
to measure 2 from the hump surface), we obtain 

V X +  vz = 0, (3.1) 

ZUx+ V = -P’(X)+D,  (3.2) 

D = - P ( X ) ,  F = o  on Z = O ,  (3.3) 

to first order in h, with 
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Progress may be made with F ( X )  still of general form, provided of course that 
h P ( X )  < 1 for all X .  Applying Fourier transforms with respect to X to the 
governing equations yields the solution 

aV,/az = B ( U )  Ai [ (o  + iw)) Z], 

where Ai is the Airy function; the other solution grows exponentially at infinity 
and is inadmissible because of (3.4). Here w is the transform variable, the sub- 
script f denotes transformed quantities and (0 + iw)% and (0 - iw)” are defined to 
be real on the negative and positive imaginary axes respectively. B(w) is to be 
determined. Using conditions (3.3) and (3.5), 

(02  + W2)+ 

o+iw Qf, 
( O + i W ) 2 D f  (w,co) = - (3.7) 

whilst the momentum equation implies that 

(3.9) 

0, = B(w)JozAi[(O+iw)*t]dt -F,(w), 

and using (3.7) and (3.9) we are able to solve for Q , and B ( w  ) . Upon inverting the 
transforms the pressure gradient and effective skin friction 7 = 1 + h g z ( X ,  0) are 
given in terms of integrals in the complex-w plane involving Ff(w). Formally 
both results may then be expressed, after some manipulation, in real convolution 
form and give solutions for the flow ahead of and over the hump, and in the wake 
immediately downstream, as follows: 

7 = 1 -  3hAi ( O )  “1 qx - t )  P(t) at, 
2n --m 

(3.10) 

(3.11) 

where 

(3.12) 

(31s+ - 2) e-estds m s%( 3+s+ - 1)  as 
( t  > 01, I - 39s4 + sz 

O0 sg eest ds ..(.1’. (t 01, a =  (q 0 l + s 6 ’  

10*  s2 1 - 33s%+s$ ’ 
m s2 eestds 

0 l+s2 

and we have introduced the number 8 = [ - 3Ai ‘(0)]4 = 0.8272.. . . The different 
forms of solution for t < 0 and t > 0 correspond to closing the contour in Im w < 0 
and Im w > 0 respectively. 

For any well-behaved hump profile h F ( X )  we thus have the distribution of 
pressure gradient P’(X) and skin friction 7 ( X )  to first order in h for all values of X .  
An example is given in figure 3 below. 
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4. Application to very small humps 
We shall now discuss a special case. In  order to deal with the flow problem for 

a very small hump, for example, one of dimensions LA by L6, where A < c4 
and 6 < A&* (see (1.1) and, for clarification of the scalings, $ 8 ) )  it  is necessary 
for our present hump to tend to a point disturbance at  the origin on the e3 scale 
in x*/L. Let us therefore consider a hump with maximum height of order Lhc5/h, 

length of O(Lc3h), satisfying F ( X )  dX  = 1 and therefore becoming a delta 

function within the lower deck as h + 0. Concrete examples are 

m 

Sw 
F ( X )  = ~ ( l / h - X . i A 3 ) }  for 1x1 < A ,  zero otherwise. 
F ( X )  = l/2h 

The analysis below applies directly, however, to any shape of hump with length 
and height of these orders. If we keep h / h  < I, the fluid motion generated by the 
presence of such a hump still lies within the scope of the above linearized analysis 
for all h - provided also that h -+ 0 is defined suitably and we remain outside the 
Le6 by Lc6 region, as explained below. 

Letting h --f 0, but with h/h --f 0 also, we obtain 

m 

Ff(w)= J- P ( X ) d X  = 1, 
- m  

which is independent of o, and from (3.10) and (3.11) therefore 

dP he3 s2e-egs(3*s+ - 2 )  ds 
d X = % / o  1-3*s%+s% ' 

sQe-exs( 3+s+ - I) ds 
1-3+s4+s% ' T ( X )  = 1- 2~ (4 .3)  3h Ai ( O )  "s 0 

€or X > 0,  that is, everywhere in the wake of the hump. Similar expressions may 
be obtained from (3.12) for the pressure gradient and skin friction in X < 0 
(see figure 4)) showing how the presence of the hump is anticipated far ahead of 
the actual location of the hump. We also include for use below the solution forthe 
displacement thickness &X) obtained via (3 .6);  by operations similar to  those 
above it is found that 

Now we wish in particular to ascertain the flow characteristics for the hump 
described in (1 .  I ) ,  and in our present terms this corresponds to taking the limits 
h -+ 0, h + 0, h/h  -+ 0 such that h/h N 6/e5 (so that the height is of the order of 
magnitude required by (1.1)) and he3 N A (equating the order of the length to 
that in (1.1)); this of course is the only true sense in which any of the asymptotic 
analysis here can be considered valid. Hence 

h N A6/e8(< I), h N A / e 3 ( 9  h )  
.are the relevant limits. 

(4.5) 
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For X < 1, equation (4.2) shows that 

P'(x) ( 3 t q n )  my;) x-8 + . . . ( 4 . 6 ~ )  

and so, as X -+ O(h) ,  i.e. remaining close to the hump (on the Ls3 scale) as we 
let the hump shrink, a pressure gradient of order is implied for the local flow, 
taking into account the scaling factors for P and X .  Similarly, inspection of the 
integral in (4.3) shows an X-6 behaviour for small X ,  which implies a skin- 
friction perturbation of order S/Ak8 when the limits in (4.5) are taken, with X 
remaining of O(h) .  Also from (4.4) we find 

We return to these results, describing the immediate neighbourhood downstream 
of this point disturbance, in $8. 

Considering the general point disturbance again, the complete and efficient 
rational basis on which the triple-deck structure is built allows the results of 
(4.2)-(4.4) to be applied directly not only to the L A  by LS hump but also to the 
whole range of heights given by s < h/h < 1. Thus for all such values of h/h the 
triple-deck structure still applies downstream, where the flow due to the hump is 
a, small perturbation of the Blasius solution, and for general body shape F ( X ) ,  
provided h F ( X )  is well-behaved, separation of the flow will not occur according 
to (4.3). Indeed, as the hump shrinks the wake solutions we have obtained 
finally fail, and a basically different character for the flow arises, only when the 
limit h/h - E is reached. At that stage ( A  N s3, h N e4), the triple-deck solution 
predicts a pressure of O(s4) and a skin-friction perturbation that overtakes the 
Blasius shear contribution about which we originally linearized, and the neces- 
sary re-evaluation of the local flow shows that the full Navier-Stokes equations 
including a pressure forcep(x*/Le6, y*/Le6) are relevant in the region Le6 by LEG. 
This hierarchy of regions is analogous to that for the trailing-edge problem 
discussed in Stewartson (1969) and Messiter (1970), and in the appendix we 
show that there is a direct match between the wake solutions for the LEG by LEG 
hump and those for the hump (1.3) that we initially considered. Thus, outside 
this very small region the main features occur on the Ls3 by Ls3 scale, the main 
stream influence remains a dominant effect and the first-order flow is as described 
above. The analysis below, and in §§5 and 6, for a point disturbance therefore 
holds true for all humps of the above description including that of (1 .1) .  

We now obtain the flow solutions in the wake far downstream of the point 
disturbance ( X  9 1). The results are easily extended to the problem of a body of 
length of O(Le3h) and height of O(Le5h/h), with h finite, by inclusion of a factor 

/ ; A F ( X ) d X  

throughout since for X > I this body is effectively a point disturbance also, from 
(3.10) and (3.11). Examining (4.2)-(4.4), we have for X 1 

dP/dX = - 2h/nX3 + . . . , (4.7) 

(4.8) 

(4.9) 

T ( X )  = 1 + (3hAi ( O ) / Z n @ * )  I?($) X++ ..., 
A ( X )  = -(hr(i)/27~OQ)X-z+ ... . 
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Equation (4.8) shows that the skin friction returns to the Blasius value as we 
proceed downstream out of the lower deck, whilst the decay of (4.7) agrees with 
the matching requirement on the pressure obtained from the external flow region. 
For there y*/L and x*/L are of 0(1)  and the perturbation velocity potential $ 
satisfies VZ$ = 0 with $F = he2dFl/da: on Y = 0 (from linearized thin-wing theory), 
where Fl(x) = .F(X) ,  Y = y*/L and x = x*/L. Hence the pressure along Y = 0 
produced by the external inviscid theory is 

O0 F'(s) as 
-a t - x  7r -* s-x 

p)ext = $1" F';(t)dt - e2hS 

upon substituting t = e3s and X = x/e3. As we let F(t )  become the delta function 
we obtain pext/e2 = h/nX2 in the limit, using propertiesof the delta function. This 
matches with (4.7) as X -+ 00, showing that the required consistency is obtained 
by the triple-deck model. Similarly, it can be shown that the solution for dP/dX 
when X is negative, using (3.12), agrees with the solution for dpext/dx a,s X-+ - 00 

and x -+ 0 - respectively. Matching of Pz(X ,  g )  in the upper deck is likewise veri- 
fied, and hence we see that even the point disturbance generates a major effect 
just outside the main part of the boundary layer. 

The known pressure-gradient expansion (4.7) enables the solutions for U and 
V for large X to be found to first order in h in similarity form. With the similarity 
variable 7 = Z/X&,  g must be written as 

0 = X-%G'(v) + ... for X -+ ao (4.10) 

to comply with the boundary condition 
given by (4.9) for X & 1. Substituting (4.10) and the corresponding form 

--f B ( X )  as 2 + ao, where A ( X )  is 

V =  ( 2 G + k ~ G ' ) x - ~ + . . .  (4.11) 

into the equation of motion (3.2) and retaining the highest order terms produces 
the following equation, with a prime denoting dldy:  

G "' + +72Gf' + 2vG' = 2G = - 21. (4.12) 

which is to satisfy the boundary condition G(0) = G'(0) = 0 (no slip a t  the wall) 

and ~ ' ( m )  = -r(;)/2ne* (4.13) 

(matching ;LS 2 -+ 00 with Xilarge but fixed). An important point here is that the 
pressure gradient still has an effect on the first-order flow for large X ,  via the right- 
hand side of (4.12). 

The general solution for G(7)  may be obtained by the (standard) procedure of 
writing G = yH(7)  and solving for dH/@ and we find that 

with s1 = &$ and P denoting a Cauchy principal value. The wall boundary con- 
ditions then produce 

whilst from (4.13), C +  12Ar(Q) 3 4  = -3I'(4)/2n84. 

B = i/3+.r(g), c = - 4 ~ r ( + p / 3 + ~ ,  
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With A ,  B and C thus determined, we may evaluate 

G"(0) = 30A + J#Bn/38 = Q3t/nO*. (4.14) 

Hence from (4.10) we have 

T ( X )  = 1 + h[X-Q x %3*/n& + . . .] + O(h2) for X 9 1, 

agreeing with the already calculated expansion (4.8) for the skin friction. 
The flow pattern far downstream of the hump is therefore established. As 

X 3 co the perturbations produced by the point disturbance decay and the flow 
reverts to  the Blasius form. The streamwise velocity perturbation behaves like 
Z / X S  for small 2 and like X 3  for 7 -+ GO, the pressure decays like X-2  and matches 
with the external inviscid solution. The flow to first order retains both the 
2 + A ( X )  interaction character for 2 3 GO and the pressure-gradient effect. 
The results for a point disturbance are also obtainable by use of the representa- 
tions in (4.1) and the convolution expressions in (3.10) and (3.11) and by letting 
h --f 0 in the resulting exact solutions. The parabolic hump in (4. I)  is clearly 
more satisfactory in this respect as use of the step function entails extra considera- 
tion of the flow near the corners of the hump. However, the delta function analy- 
sis only is included because of its greater simplicity. 

5. Supersonic main stream 

where h 
zation produces equations (3.1)-(3.5) but with 

For M, > 1 the lower-deck problem for the hump of general shape 2 = hP(X), 
1, is in many respects like that for the subsonic problem of $5. Lineari- 

Dr(w,co) = -pf(O+iw)-3 and (a2Uf/a22) (w ,O)  = pf(O+iw) 

replace (3.7) and (3.9) respectively and we find that 

3Pr(w) (O+iw)Q - -64(0+iw)Pf(w) 
(5.21, (5.3) (o+iw)+-et 3 'f= (8 + iw)4 - 84 * B(w) = 

Thence, by contour integration much akin to that for $ 3 but not so complicated, 
formallv 

where 

(5.4) 

P(X - t )  R(t) at, 

38hAi ( 0 ) o t / m  
T(x) = 1 -  F ( X  - t )  S( t )  at, 

2n --m 

P(X - t )  R(t) at, 

F ( X  - t )  S( t )  at,j 
T(x) = 1 -  38hAi ( 0 ) o t / m  

2n --m 

(5.4) 
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For any point disturbance at the origin as defined in 0 4 we therefore have the 
wake solutions 

to first order in h. These give exactly the same X 3  and X-f behaviour for the 
pressure gradient and skin friction respectively near X = 0 as those worked out 
for the subsonic flow, equation (4.6) ff., and from (5.1) the displacement function 
A ( X )  has the same form as (4.6). So the comments in the previous section on the 
application of the triple-deck results to the very small hump problem as X -+ O(h) 
also apply wholesale to supersonic flows. Likewise, the flow ahead of the hump is 
easily determined from (5.4) and we observe that A ( X )  is continuous and non- 
zero a t  X = 0. Graphs for M, > 1 are included in figure 4. 

Concerning the wake far downstream of the point disturbance, (5.5) and 
(5.6) yield 

(5.7) i P ( X )  = - (3+hpn04) r(y)x++ ..., 
7(x) = 1- (3%/2~)&(0)  r(q)x-s+ ..., 

A ( X )  = - (2 x 3 : i ~ / 9 ~ 0 ~ )  r(+) X-: + . . . 
as X -+ 00. The last two expressions are similar to (4.8) and (4.9) but now the 
skin-friction perturbation is negative. The approach of the far-wake flow toithe 
upstream Blasius solution is therefore of the same form as that for M, < 1, 
the first-order velocity perturbations ?7 and 7 having the similarity forms 
(4.10) and (4.11) respectively. However, the pressure here decays faster than 
the X - 2  decay of the M ,  < 1 case and hence the governing equation is 

G"' + +q2G" + 2yG' - 2G = 0, 

the pressure effect in the far wake being absent to first order. The solution satis- 
fying the wall conditions G(0) = al (0)  = 0 is 

whilst matching 0 with h-lA(X) as given in (5.7) implies that 

~ ' ( m )  = - 2 39r(+)/9n0+. 

Hence A = - 1/2n0*3'eZ and G"(0) = - 5/n8$3;. The skin friction implied by the 
similarity solutioiis therefore agrees with that in (5.7) and overall the decay of 
the velocity perturbations in the far wa,ke has the same character as that in the 
subsonic case. Because of the close similarity between the results for all X 
whether the main stream be subsonic or supersonic (see also figure 3), theremain- 
ing sections dealing with the hump problem apply equally well to both the 
M, < 1 and theM,  > 1 regimes. 
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6. Forces and couple on the hump 
We now examine the forces and couple acting on a hump of general shape: 

2 = h F ( X )  where h < 1, (6.1) 

and suppose the hump to have length 2hs3L, with h finite at present. To make 
comparisons between the contributions to the total force from the different 
stress components acting at the body/fluid interface, we first relate all the terms 
involved to  the O( 1) co-ordinates x = x*/L and Y = y*/L  and to the unscaled 
variables u = u*/U:, v = v*/Uz  and p = (p* -p*,)/pz UzZ.  By considering the 
stresses on an element ds of the hump surface, the streamwise force Fl acting on 
the whole body is then found to be 

p1 = J (p(x)s inads+~, ,d~  + ~ , ~ d x ) ,  

where a = tan-l (dY/dx), 7,, = 28u, and T,= = @(up +v,). 

Written in terms of the lower-deck variables of (2.4) ff., we therefore have 
h 

- A  
Fl = 1 [ s 7 h 2 p p ( X )  + 2 ~ ~ ~ h ~ ~ ~ I ~ =  oF’(X) + e7( 1 + 

where linearization is applied at 2 = h F ( X ) .  Hence the highest order term 
remains the Blasius-shear contribution, which gives 

= + hs4vxlZ= 0)] d X ,  

F~ = 2 ~ .  (6.2) 

Likewise the force acting on the body in the Y direction is given by 

Upon integration, the Blasius-shear contribution gives a zero net force, so that 

Fz = 0 to O(sh2). (6.3) 

The clockwise couple on the hump due to streamwise stresses only (i.e. due to 
force elements dFJ is, by similar reasoning, 

c1 =I” [€7h2FFf(X) +2€llh2aXIZ=OP’(X)+€7(l +haZ~z=o+hs4vx~Z~0)] 
- A  x hs5F(X) ax, 

of which the highest order term gives 
h 

--A 
c1 = €1%J F ( X ) d X .  (6.4) 

The couple due to stresses normal to the main stream is 

so that to first order in h 

= P h  F(X)dEX 
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Therefore the total couple on the hump is given to f i s t  order in h by 

C = 2Re4h /*  F ( X ) d X ,  
- A  

a result holding true for any body of the form (6 .  l), and for both supersonic and 
subsonic main stream flows. The contributions to C from C, and C, are equal in 
magnitude and sense, both being clockwise-positive. In  particular, applying the 
result to the case of a point disturbance (of any shape; for example, those of (4.1)) 
within the lower deck and letting h -+ 0, we therefore obtain 

C, = C, = gC = Re-%h 

to fist order in h and c,  for any very small hump. For the LA by L6 examples 
defined in (1.1) and using ( 4 4 ,  this suggests that 

(6.6) C, = C, = &' = A6Re-4. 

7. Longer humps and the implications of boundary-layer theory 
In  order to be systematic in dealing with the small-hump problems, we show 

here that the triple-deck structure, describing the flow past the humps of $5 2-6, 
is implied by the breakdown of the boundary-layer theory given below that deals 
with humps of length greater than O(Le3). 

For such long humps the following analysis shows that there is no first-order 
pressure-gradient effect in the flow over the majority of the hump and its wake if 
the hump is taken to be of height H L E ~ ,  where 1 % H 3 e4 (or H = &). Consider 
the hump profile 

where L is as in figure 1 andf(x*/L) is of O(1) or less for all x* > 0. We assume 
that the hump produces no O(H)  effect in the main stream, the major effects 
due to the introduction of the hump being confined to the boundary layer flowing 
past. The assumption is investigated a posteriori. 

Scaling y = y*/Le4 and x = x*/L, so that the hump becomes y = Hf(x), we 

(7.2) 

expand 

y* = HL@j'(x*/L), (7.1) 

1 u = [UB(X, y) +Hu,(x, Y) + . . .I, 
v = S4[VB(X, y) + Hv,(x, y) + . . .], 
P = [HPl@, Y) + 9 . .  I, 

terms of order H 2  and e4 and smaller being omitted in the square brackets. Here 
U,(x,y) is the Blasius flat-plate solution given by UB =fi(r), where now 
q = y/[2( 1 + x)]$,  since the leading edge is situated at x = - 1, and a prime denotes 
d/dy. The full Navier-Stokes equations then yield the following. 

(7.3) Continuity: (UBz +Hu,, + . . .) + (V', +Hvly + . . .) = 0, 
x momentum: 

(U, + Hu, 3- . . .) (U,, + Hu,, + . . .) + (V, + Hv, + . . .) (U', + Hu,, + . . .) 
= - (Hp1~ + * * .  ) + ( UBg, + Hulg, f . . . ), (7 .a)  

y momentum: Pl = P l ( X ) *  
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Since we hypothesize no O ( H )  effects as y + GO, 

p 1  = 0. 

Examining (7.3) and (7.4), we see that the combined velocity 

(U = UB+ H u ~ ,  V = VB+HV,) 

satisfies to OfH) the flat-plate boundary-layer equations 

together with 
u, + v, = 0, uu, + VU, = ua,, 
U = V = 0 on y = Hf(x ) ,  
U - t l  as y-fco, 
U = u,(o,~) =f&) at x = 0. 

817 

(7.5) 

(7.6) 

The second condition here is that we require u = 1 + o ( H )  outside the boundary 
layer. 

The solution for U and V follows by transforming to the variables 

y1 = y - H f ( ~ ) ,  V, = V-HUdf/dx. 

For then, with y1 replacing y, ( U ,  V,) satisfies (7.6) and the boundary conditions 
become flat-plate ones with initial profile U,(O, y,), since f(0) = 0, and U -t 1 
asy, --f co. Hence 

where now 
= uB(x,yl), V, = VB(x,!!l), 

UB(X, Y1) = f & ? l ) ,  V ( x ,  Y1) = (rlfh -fn)/I?( 1 + x) l4  71 = y,/M 1 + 4 1 4  
and a prime denotes d/dy,. 

Let us now examine the efflux from the boundary layer as implied by this 
solution. As y1 -+ GO, V, -+ /3,[2(1 +x)]*, where p1 = 1.21678 ... from Van Dyke 
(1964), so that in order-one variables 

When H < 1 and x is O( 1) this efflux is the usual boundary-layer one (implying 
a displacement thickness p1e4 [2( 1 +x)]*) plus an O(He4) term, these being used 
to compute the second approximation in the external flow and thence the second- 
order boundary-layer flow. So the assumption of no O ( H )  disturbance in the 
main stream and no first-order pressure effect in the boundary layer is valid for 
such x ,  justifying (7.5). 

However, when we take H N 6 and consider x N e3, the efflux is of order e2 
since f(x) is order unity. A pressure variation of O(e2) is then fed back into the 
boundary layer and we observe that when y N H = O(s) neglect of this e2 
pressure effect is invalid, since dp/dx and uau/ax are both of O(6-l). Overall, this 
indicates that a three-tiered structure is developing near x = 0: an outer region 
whose appearance is forced by the outflow from the main boundary layer; a 
middle region of thickness N LRe-4 where pressure effects remain absent; and a 
viscous inner region where the pressure variation induced by the feedback proper- 
ties of the outer region now has a fist-order effect. The sca.lings, orders of magni- 
tude and flow characteristics evolving here are exactly those of the systematic 

52 F L M  57 
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rational expansions and matched solutions of the triple-deck structure and, as 
shown in $5 2-5, the structure is able to cope with the non-uniformity appearing 
in the boundary-layer-theory approach above. For a fuller account of the neces- 
sity and importance of taking this Re-8scalingin x*/L, we refer to Messiter (1970), 
who considers the allied problem of the flow in the wake of a flat plate. Limits 
other than x N e3 and H N E: then provide only second-order correctioiis to the 
triple-deck solutions. 

By letting the length of the hump tend to O(Le3) we see that a triple-deck 
analysis is required for all humps of length Le3 or greater, the flow outside this 
region for the latter case being a small viscous perturbation of the Blasius 
solution without pressure effects. If the hump has length Le3 or less, then the 
above argument shows that the flow in the triple deck must revert to the un- 
disturbed boundary-layer form as X -+ co provided that separation, if it occurs, 
is only of the type producing a stagnant bubble near the hump. This is consistent 
with the supersonic and subsonic large-X solutions both for the point disturbance 
considered in $54 and 5 and for a hump of dimensional length 2hLs3, where h is 
finite. In  thc latter problem, by use of the convolution integrals for P(X) and 
T ( X ) ,  the same large-X solutions clearly hold apart from the inclusion of a 
factor 

F ( X ) d X  
throughout. 

- A  

8. Discussion 
The different types of fluid motion corresponding to the various sizes of hump 

considered now seem to fit into a complete and consistent picture for both super- 
sonic and subsonic main streams. For very small humps of dimensions LRe-4 by 
LRe-I, the full viscous Navier-Stokes equations apply with a pressure force 
dependent upon y*/Le6 as well as x*/Lt? (see appendix). For all humps larger than 
this, but not of full boundary-layer height, a triple-deck structure incorporating 
viscous effects and the induced pressure P(X) describes the wake flow locally near 
x* = 0 and the main perturbation effects act on the e3 scale in x*/L. The match 
between the wake solutions on the Le3 length scale and those on the Le6 scale is 
direct, as is shown in the appendix, and even for the point disturbance discussed 
in $4  the influence of the associated wake must be considered over a length Le3. 
If the hump has length 9 Le3, a triple-deck model still applies near x* = 0, but 
for x*lL of order unity the flow is a simple perturbation of the Blasius solution, 
without pressure gradient, as given in $7.  Thus the triple-deck results afford a 
continuous transition from the LRe-2 problem for a size at  one extreme to the 
problem considered in $ 7 at the other extreme, and this is why so much signifi- 
cance has been placed on the flow features for the hump (1.3). 

The solutions for the induced pressure P ( X )  and skin friction T(X) when the 
hump (1.3) has the parabolic profile F ( X )  = X( 1 - OX)/Ofor OX between 0 and 1, 
with h < 1, are presented in figure 3. Both P and T are everywhere continuous but 
T’(X) is discontinuous at each end of the obstacle, with ~ ’ ( 0  + ) and T’(O-l+ ) 
infinite when M, < 1, and P’(X) experiences finite jumps there if M, < 1. The 
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0 I 
FIGURE 3. Distribution of (a) pressure P ( X )  and ( 6 )  skin friction 7 ( X )  for 

the flow past a parabolic hump for M ,  < 1 and M ,  > 1. 

general development of the flow over the hump is physically sensible, although 
some further local treatment would obviously be desirable very near the end 
points to smooth out the irregularities there. It is observed that downstreamof the 
hump the skin friction r initially returns to its original value 1 from below despite 
the action of an adverse pressure gradient for some distance there. The most 
likely place for separation to occur first as the obstacle height h is increased to 
O( 1) would appear to  be at  the downstream end of the hump according to linear- 
ized theory but firm conclusions on this and other points of interest, particularly 
concerning the possibility of separation, must await a numerical treatment of the 

52-2 
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I n )  

( r  - 1) ‘11 
0 .Y 1 2 

0 1  I I c 

-1 

FIGURE 4. Graphs of (a) pressure P and (b)  skin friction T versus X for the point disturbance 
at the origin. The factor h < 1 is effectively a measurement of the body’s cross-sectional 
area in the co-ordinates X and 2. 

full nonlinear problem posed in Q 2. In  figure 4 for Ma 3 1 we show the variation 
of pressure and skin friction produced by the point disturbance within the lower 
deck. The precise details of the flow at the hump have been uncovered for (1.3) 
(see $ 3) and for (7.1) (see $ 7 )  but these details and the possibility of separation 
close to the obstacle have not yet been explored for the very small hump or for 
the Ls6 size. In terms of the flow right a t  the hump there may well be an inter- 
mediate regime of O(Ls4) required to form the link between this last size and the 
triple deck size (1.3). 

For the particular category (1.1) which lies within the range of applicability 
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of triple-deck theory, many of the flow features exhibited in the previous sections 
are similar in nature to those in Hunt’s paper. However, in contrast to our results, 
the latter work produces an integral constant 

I = ~owz2,u,dzl 

(for notation see below), whereas we find the integral divergent, and predicts 
C, 8 Cl in some circumstances. Since a number of other discrepancies can be 
revealed, some explanation and further comparison seem called for. The notation 
below is consistent with that of $9 1-6. Interpreted in terms of asymptotic expan- 
sions involving the three most important parameters for the problem, namely 
Re, A and 6 as defined in $1, Hunt’s argument, erroneous in our view, starts in a 
region (I) L A  by LA. Hereu- y, v andp are assumed to be of 0(8/A%), O(8lAQ) and 
O(SA*/s4) respectively. An inner region I1 then follows in which the correspond- 
ing orders of magnitude are 

8/&, 8/A% and 8A)/e4, and XI = x*/AL and z1 = y*/A*s4L 

are of O(1). The resultant equations are then effectively (3.1)-(3.4) but the link, 
or interaction, with the main stream flow, represented by ( 3 4 ,  is absent and the 
conditions 5, --f 0, v -+ - clp/dx as z1 -+ 03 are used, where 2, = (u - y) s4/& 

Now the skin-friction and pressure perturbations here agree in order of 
magnitude with those calculated in #4, but from (4.5) we see that triple-deck 
theory implies that the correct boundary condition as y*/L -+ O(e4) from below 
should be u - y -+ shA(0) N A8/s7 (and =+= 0 )  when X N A. Thus the perturbation 
in u in region I should be much greater than that implied in the previous para- 
graph. The form (4.5) also shows that the non-dimensional efflux into the main 
boundary layer (from the lower deck) must have the form 6Ak4/yXiQ.  Our 
result is a t  variance, both in form and scaling, with the result (4.16) of Hunt. In  
our view it is the inconsistency in the assumption that the pressure in I and I1 
isindependent of main streaminfluence that causes the error in I; the fundamental 
link, which is represented by relations (2.9) and (2.10) between A ( X )  and P ( X )  
and which still holds as x*/L --f O(A) in the lower deck, has been missed. As shown 
in Q 4 and by the direct match discussed in theappendixeventhisverysmall hump 
produces in its wake effects that in terms of the interaction remain significant 
up to x*/L of order 8 and hence for consistency the problem (1.1) must be 
considered on this length scale, i.e. by use of a triple-deck model. 

The neglect of the main stream influence is not entirely justified and, although 
we agree with many of its basic assumptions, i t  is our opinion that Hunt’s model 
is therefore not quite complete. Indeed, to have a first-order effect in any inner 
region the pressure must be of the induced (feedback) type, generated. by the 
outflow from the boundary layer and hence bringing the influence of the main 
stream down to the inner regions of the boundary layer, close to the hump. The 
triple-deck structure and the flow features exhibited in the previous sections 
therefore override any purely local analysis for all humps lying outside the scope 
of the Ls6 by Le6 regime. 
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We have shown that the forces and couple on a small hump are given by (6.2)- 
(6.5)) and these results can be expected to hold for any point disturbance (such 
as (4.1)) defined by the limits (4.5). The two couples C, and C,, due to  x-wise and 
Y-wise forces respectively, contribute equally to the highest order term of the 
total couple, C, which is directly proportional to the cross-sectional area and 
independent of the shape of the hump. From the discussions in $34 and 5 we 
must conclude that overall there is no meaningful integral relation between 
C,, C,, F, or F, and the flow throughout the wake of the hump. The flow in the 
near wake, that is, for X < 1, may well exhibit a relation analogous to that found 
by Prandtl & Tietjens (1934) for flow in the wake of a body moving through a 
uniform flow field. A two-region structure within the lower deck, similar to those 
in Stewartson (1 970b)  and Smith (1972) and based on a Goldstein (1930) expan- 
sion scheme, seems likely to describe this near-wake motion. Such a structure 
would correspond to regions 1 and I1 above but with proper allowance made for 
the interaction (2.9) or (2.10); moreover, because the no-slip conditions on the 
hump surface have been satisfied by the triple-deck solutions, the indeterminacy 
inherent in the purely local approach is also resolved. 

The wake far downstream ( X  g 1) of any small hump has the similarity form 
given in (4.10) and (4.11) for both subsonic and supersonic external flows. An 
interesting point of comparison here is that in the former regime the return of 
the motion to its far-upstream form takes place under a forcing pressure gradient 
N X-3,  whereas in the supersonic problem the pressure-gradient effect decays 
much more rapidly ( N X - 9 ) .  Just aft of the very small hump - that is, in the near 
wake in terms of X = (x*/L) Reg and the far wake in terms of the co-ordinate 
XI-the pressure N X-8 and the skin-friction perturbation is negative and - X-t, whilst 

which implies that throughout the near wake the perturbation to the undisturbed 
boundary-layer solution for u*/Uz ,  caused by the introduction of the hump, is 
negative across the whole boundary layer. These near-wake results hold for 
M, 2 1, showing that the main stream retains its influence on the fluid motion 
even near the hump and that this influence is the same for a supersonic and a 
subsonic external flow. 

A ( X )  - (hepn) ( 4 3 h  - 3r(3 (ox)+ + . . .), 

My thanks and appreciation go to Professor K. Stewartson for directing my 
attention to this problem and for his subsequent interest in the present approach. 
I am also grateful to Professor M. J. Lighthill and the referee for their useful 
suggestions. 

Appendix. The match with the solutions for very small humps of 
dimensions of O(L Re-f) by O(L Re-2) 

From the triple-deck results (4.4), (3.1) and (4.2) above, we can expect that 
when the hump's size is decreased so that its length and height are both of 
O(LRe-%), just beyond the range permitted by (1.1), the X-wise and 2-wise 
velocities and the pressure perturbation near the hump ( X  N A )  are of orders 
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ez, e2 and €4 respectively, bearing in mind the limiting process (4.5). Before this 
stage is reached, e.g. for all humps (1.1), the basic assumptions of the triple-deck 
structure remain appropriate. This may be seen in a number of ways; for instance 
the inviscid-displacement character of the main deck persists as the y variation 
in the pressure force p2 ,  equation (SW 3.13), is effectively 

ap2/ay = - eU,(y) ~ ‘ ( x )  A8c7X4 

near the hump, under the limits (44, and as long as (1.1) holds this is always 
4 1. Also, the interaction is preserved as shown in $5 .  But for the Le6 by Le6 
regime the triple-deck solutions finally break down as a comparison with Stewart- 
son (1969) suggests and, putting u = e2Q+ o(e2) and so on as implied above, the 
governing equations are found to be in fact the full Navier-Stokes equations 
(Stewartson 1968) : 

Here (9,Q) = (x/e6, y/&, V2 = a2/a6? + a2/agz and $ is the stream function for the 
scaled velocity (u/e2, V I E 2 ) .  The boundary conditions are 

a($, v2?ww, Q) = - V4$. (A11 

$ = a$/ag = 0 on the hump 9 = I?($), (A 2 )  

$-++Q2 as @-+a, (A 3) 

the latter to provide the anticipated merging with tho undisturbed boundary- 
layer solution far from the hump. 

The remaining analysis is very similar to, but simpler than, that in Stewart- 
son (1968) and so in referring to the paper we shall for convenience write only 
S. We apply the Oken linearization procedure, replacing $ in (Al)  by $Q2 to 
obtain (S2.9); z and y in S are of course equivalent to 2 and Q in the present 
context. Linearizing (A2), assuming F ( x )  to be well-behaved and small, and 
applying Fourier transforms we obtain from (S 3.8) 

F = B(w) dije-~iwlAi {(g - i w )  (0 + iw)”), (A 4) 

the notation being as defined in S. Our particular interest is in the behaviour at 
large 2 downstream of the hump and so we examine the solutions for w -+ 0, 
where w is the transform variable. From (S 4.4) and (S 4.7), we then have in (A 4) 

som 

B(w) N 3F(O) (0 -ti@)*. (A51 

Now, the linearized &momentum equation 

yields, at Q = 0, d{f@,O))/di? = [ a ~ / a Q ] g = , ,  for large 9, where x = V$-- 1, so 
that using (S 3.4) and letting w 3 0 we obtain 

or 
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This matches exactly with the triple-deck solution (4.2) for the pressure gradient 
as X + 0 there, taking into account all the scaling factors involved. Similar 
matching is found for the effective skin friction 7 since here ~ ( 2 )  = 1 + x(2,O) 
gives 

7 N 1 +'! 277 --m O0 3P(O)Ai(O) (O+io)*ei3do (A 7) 

from (S 3.4) and (A5), and solution (A7) agrees with (4.3) for X + 0. 
The direct matching of the wake solutions for very small humps and those of 

the triple-deck type (1.3) is therefore demonstrated and a continuous transition 
from the one class of problems to the other as the hump size swells is indicated, 
without any need for an intermediate regime. This self-consistency further justi- 
fies our confidence in the picture presented at  the beginning of $8. 
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